OPERATING MANUAL

ba41108e08 11/2018

photoLab® S12

PHOTOMETER

For the most recent version of the manual, please visit www.WTW.com.

Scope of delivery

- Photometer
- Power pack
- Product documentation

Copyright

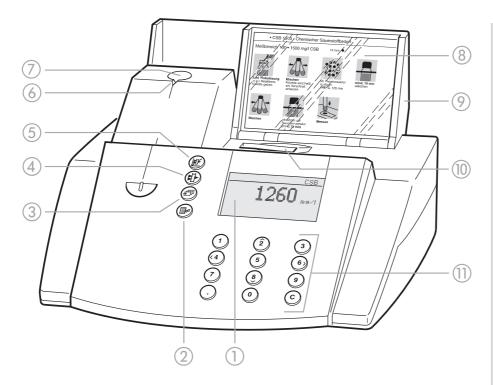
© Weilheim 2018, WTW GmbH

Reproduction in whole - or even in part - is prohibited without the

express written permission of WTW GmbH, Weilheim.

Printed in Germany.

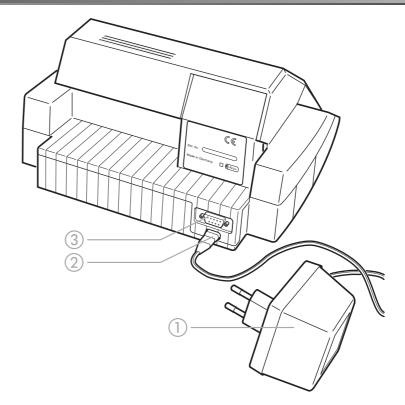
2 ba41108e08 11/2018


1. C	Overview
1.1	Description of the operating elements 7
1.2	Identifying the connectors7
1.3	Short manual8
	1.3.1 Measuring the concentration8
1.4	Selecting and calling up the menu items 9
2. S	cafety 10
2.1	Authorized use
2.2	General instructions
	2.2.1 Labeling of notes
	2.2.2 Dangers of disregarding the safety
	instructions10
	2.2.3 Qualification of the personnel 10
	2.2.4 Technical state of the meter 10
3. C	Commissioning 11
3.1	Preparing the photometer11
3.2	Switching on the photometer
4. N	leasuring the Concentration 12
4.1	Display of concentration and absorption 12
4.2	Measuring using cell tests
4.3	Measuring using reagent tests14
4.4	Measuring using tests without barcode
	(manual method selection)15
5. N	leasuring the
P	Absorbance/Transmission 16
5.1	Switching to the Absorbance/ Transmission
	measuring mode16
5.2	Measuring the absorbance or transmission 16
5.3	Measuring using cell tests17
5.4	Measuring using reagent tests18
5.5	Measuring using tests without barcode18
6 6	Accumentation 10
	Occumentation
6.1	Resetting the number of the measured value .20
6.2	Activating the ID number20
6.3	Download memory
6.4	Download of the methods list24
7. N	lethod Parameters 25
7.1	Citation form
	7.1.1 Changing the citation form26
	7.1.2 Performing a difference measurement .27
7.2	Selecting the unit
7.3	Entering the dilution
8. A	nalytical Quality Assurance (AQA) . 31
8.1	Activating AQA31

	8.1.1 Activating AQA via the menu guide .	
	8.1.2 Changing AQA intervals	
	8.1.3 Locking the system	35
	8.1.4 Changing the password	
	8.1.5 Performing an AQA reset	36
8.2	Photometer monitoring (AQA1)	37
	8.2.1 Entering PhotoCheck standards	
	8.2.2 Download of PhotoCheck standards	
	8.2.3 Erasing PhotoCheck standards	
	8.2.4 Performing Photometer monitoring	40
8.3	Total system monitoring with standard	
	solutions (AQA2)	
	8.3.1 Entering standards	
	8.3.2 Output of standards	
	8.3.3 Erasing standards	45
	8.3.4 Monitoring of the total system	
	using standard solutions	45
0 I/	San Pan	
9. K	inetics	47
10 (Connection fractions	4.0
	Correction functions	
10.1	Blank value	48
	10.1.1 Activating the blank value	
	measurement	49
	10.1.2 Measuring the blank value	
	10.1.3 Erasing blank values	
	10.1.4 Recalling blank values	
	Reference absorbance	
10.3	Turbidity correction	54
11. 2	Zero adjustment	55
12. l	User-defined methods	57
	Entering characteristics via the keyboard	
12.2	Entering characteristics via the PC	60
	Printing characteristics	
	Erasing user-defined methods	
	-	
13. I	Meter Setup	63
13.1	Selecting the language	63
	Setting the date/time	
	Reset	
	System info	
10.4	Cystom wile	
14. l	Updating method data	66
15	RS 232 C interface	69
	Principle course of the remote control	
	Command list	
	Output format of measured values	
15.4	Data transmission	69
155	Pin assignment	60

16. Maintenance, cleaning, disposal	. 70
16.1 Maintenance - Changing the lamp	70
16.2 Cleaning - Actions to take if a cell is broken	70
16.3 Disposal	71
17. Technical Data	. 72
18. What to do if	. 74

1. Overview


1.1 Description of the operating elements

- ① Display
- ② Menu call/Enter key
- 3 Scroll key
- 4 Absorbance measurement key
- Concentration measurement key
- 6 Notch for cell alignment
- ⑦ Round cell shaft
- Storage space for analysis regulations (short form)
- Over with integrated on/off switch
- ® Rectangular cell shaft
- Keypad: numeric keypad, cursor function, erase, comma

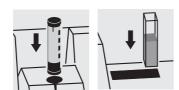
1.2 Identifying the connectors

- ① Power pack
- ② Connection for power pack
- 3 RS 232 interface

1. Overview

1.3 Short manual

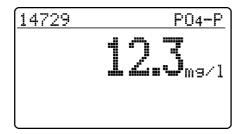
The short manual lists all of the steps necessary to determine the concentration of a sample and to activate AQA2 at a glance.


1.3.1 Measuring the concentration

 To switch on the photometer, open the cover. The photometer performs a check (Self-Check) of the entire system and then switches automatically to the concentration measuring mode.

> Concentration insert cell start measurement

Measuring mode, concentration



- Insert the round cell with barcode in the round cell shaft until it clicks into place, or
- Insert the AutoSelector in the round cell shaft and the rectangular cell in the rectangular cell shaft.

Align the line mark to the notch of the photometer. The message measuring... appears.

If the select method menu is displayed, align the line mark of the round cell or AutoSelector to the notch of the photometer.

The measured value appears on the display. Measured values outside the specified measuring range are output in small numerals. Repeat the measurement:

Press **1**.

1. Overview

1.4 Selecting and calling up the menu items

- To switch on the photometer, open the cover.
- Press

The following display appears:

Setur **p documentation** method parameter Kinetic Meter Setur

Example:

The documentation menu item is preselected in the setup menu (▶).

Select a menu item, e. g. meter setup:

− Press or 2 8.

The following display appears:

Setur documentation method parameter Kinetic ▶Meter Setur

The *meter setup* menu item is preselected (▶).

- Call up the *meter setup* submenu by pressing **!**

meter setur

return ▶AQA Functions Correction Funct. adjust zero user def. methods The required menu item is

- selected using or 2 8
- called up using

Selection lists:

- Changes to the settings are accepted after confirmation by pressing
- Current settings are marked by "#".
- Change to other configuration levels by
 - Selecting the menu item, return
 - Pressing
- Scroll with or 2 8.

Character input:

- via the numeric keypad or by using the character to be input is shown in reverse video.
- Confirm each input with

2. Safety

This operating manual contains basic instructions to be followed in the commissioning, operation and maintenance of the meter. Consequently, all responsible personnel must read this operating manual before working with the meter.

The operating manual must always be available in the vicinity of the meter.

2.1 Authorized use

The photometer is authorized exclusively for analyzing substances in water and aqueous solutions using round cells or rectangular cells (special optical glass). Observe the technical specifications of the cells according to chapter 17 Technical Data. Any other use is considered **unauthorized**.

2.2 General instructions

The photometer is constructed and tested according to the EN 61010-1 safety regulations for electronic measuring instruments. It left the factory in a safe and secure technical condition.

The smooth functioning and operational safety of the photometer can only be guaranteed under the climatic conditions specified in chapter 17 TECHNICAL DATA of this operating manual.

Opening the photometer or adjustment, maintenance and repair work must only be performed by personnel authorized by the manufacturer.

The only exceptions to this are the activities described in chapter 16 Maintenance, Cleaning, DISPOSAL. Non-

compliance results in the loss of warranty claims. Follow the points listed below when operating the photometer:

- Follow local safety and accident prevention regulations.
- Observe the enclosed instructions concerning reagents and accessories.
- Observe the regulations when dealing with dangerous substances.
- Follow the operating instructions at the workplace.
- Use only original spare parts.

2.2.1 Labeling of notes

indicates notes that you must read – for your own safety, the safety of others and to protect your meter from being damaged.

indicates notes that draw your attention to special features.

2.2.2 Dangers of disregarding the safety instructions

Disregarding the safety instructions can adversely affect the safety of both the user and the environment as well as the equipment.

Non-compliance with the safety instructions will result in the loss of any warranty claims.

2.2.3 Qualification of the personnel

The personnel responsible for the commissioning, operation and maintenance must have the necessary qualifications for this work. If the personnel do not have the required skills they have to be instructed.

Furthermore, it must be ensured that the personnel read and completely understand the present operating manual.

2.2.4 Technical state of the meter

It is the responsibility of the operator to continuously observe the overall technical condition (externally recognizable deficits and damage as well as alterations to the operational behavior) of the meter. If safe operation is no longer possible, the equipment must be taken out of service and secured against inadvertent operation.

Safe operation is no longer possible if

- the equipment has been damaged in transport
- the equipment has been stored under adverse conditions for a lengthy period of time
- the equipment is visibly damaged
- the equipment no longer operates as prescribed.

If you are in any doubt, please contact the supplier of the photometer.

3. Commissioning

The photometer operates at an environmental temperature of +5 °C to +40 °C. During transport from cold to warm surroundings, condensation can form resulting in the malfunction of the meter.

Before putting the photometer into service, wait until it has adapted to the new environmental conditions (see also chapter 17 TECHNICAL DATA).

3.1 Preparing the photometer

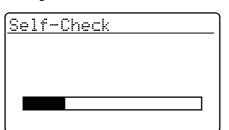
 Place the photometer on a hard, flat surface and protect it against intensive light and heat.

Line operation

- Plug the original power pack into the socket on the photometer
- Plug the power pack into the line socket
- Switch on the photometer (open the cover).

Battery operation

- Charge the battery for approx. 5 hours before the initial commissioning. To do this:
 - Plug the original power pack into the socket on the photometer
 - Plug the power pack into the line socket and then the battery will be charged.


During battery operation or when the meter is at a standstill for longer periods of time, the battery runs down. This can result in your photometer no longer being ready for operation.

When the following symbol is displayed, charge the

battery:

3.2 Switching on the photometer

To switch on the photometer, open the cover.
 The photometer performs a check (*Self-Check*) of the entire system and then switches automatically to the concentration measuring mode.

Self-check of the photometer

After approx. 5 s:

Concentration
insert cell
or
start measurement

Automatic change to the measuring mode, concentration

 Call up the concentration measuring mode by actuating .

Concentration
insert cell
or
start measurement

Measuring mode, concentration

4.1 Display of concentration and absorption

- Press to call up the setup menu
- Call up the meter setup submenu.

Meter Setur

AQA Functions

Correction Funct.

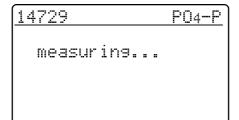
adjust zero

user def. methods

conc. / abs.

 In the meter setup menu, call up the conc. / ext. submenu.

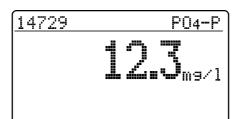
conc. / abs. conc. •conc. + abs. return Selection of the measuring mode:


- conc.
- conc. + abs.

Example

14729 P04-P 0.998 E 12.3 mg/l

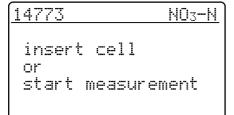
4.2 Measuring using cell tests



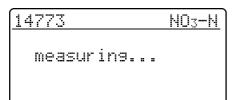
 Insert the round cell with barcode into the round cell shaft until it clicks into place.
 Align the line mark to the notch of the photometer.

The photometer reads the barcode of the round cell and automatically selects the relevant method.

After approx. 2 s:


The measured value appears on the display.

If the *select method* menu is displayed, align the line mark of the round cell or AutoSelector to the notch of the photometer.


4.3 Measuring using reagent tests

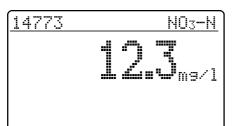
- Insert the AutoSelector into the round cell shaft. Align the line mark to the notch of the photometer. The photometer reads the barcode and automatically selects the relevant method.

Insert the rectangular cell (vertically, to the right of the slot). The measurement starts automatically. Observe the position mark at the cell shaft.

If the select method menu is displayed, insert the corresponding AutoSelector into the round cell

If the "cell type" query appears, select the relevant rectangular cell (10 mm,

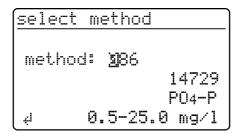
20 mm, 50 mm) with or 2 8,



confirm with .

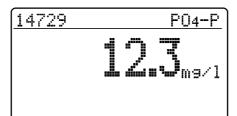
After approx. 2 s:

The measured value appears on the display.


4.4 Measuring using tests without barcode (manual method selection)

When measuring using cell tests without barcode or reagent tests without AutoSelector, the method must be selected manually.

The sequence of operations also applies to userdefined methods.



The last method set up manually appears on the display.

- Enter the required method number via the numeric keypad
- Confirm with

14729 PO4-P measuring...

After approx. 2 s:

The measured value appears on the display.

5. Measuring the Absorbance/Transmission

5.1 Switching to the Absorbance/ Transmission measuring mode

Call up the setup measuring mode by actuating

Setur

documentation method parameter Kinetic ⊫abs./trm. % Meter Setur

- In the setup menu, call up the abs./trm. % submenu.

⊫absorbance transmission return

Selection of the measuring mode:

- absorbance
- transmission

5.2 Measuring the absorbance or transmission

Call up the absorbance or transmission measuring mode (depending on the selection in the abs./trm. % menu) by actuating .

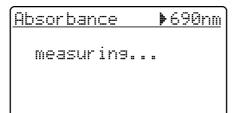
Absorbance

insert cell start measurement Measuring mode, absorbance

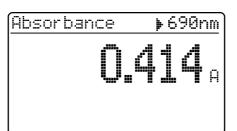
transmission

insert cell start measurement Measuring mode, transmission

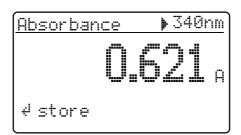
The transmission measurement is not described separately in the following example as it operates in exactly the same way as the absorbance measurement. However, the result of the measurement is displayed as % Transmission instead of A for Absorbance.

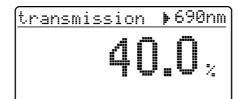


A measured reference absorbance is also effective in the measuring mode, transmission. It is displayed as reference absorbance.


5. Measuring the Absorbance/Transmission

5.3 Measuring using cell tests


 Insert the round cell with barcode into the round cell shaft until it clicks into place.
 Align the line mark to the notch of the photometer.

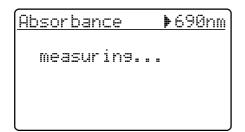

The measured value for the wavelength displayed at the top right appears. This measured value is automatically stored.

If necessary, call up further wavelengths:

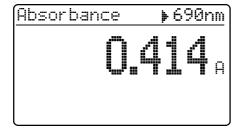
- with or 2 8.

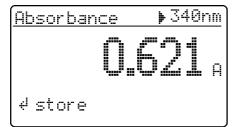
The measured value for the selected wavelength appears and can be stored and output to the interface with .

Sample display for transmission measurement


5. Measuring the Absorbance/Transmission

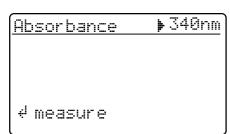
5.4 Measuring using reagent tests


 Insert the AutoSelector in the round cell shaft and the rectangular cell in the rectangular cell shaft.
 Align the line mark to the notch of the photometer.



The measured value for the wavelength displayed at the top right appears. This measured value is automatically stored.

If necessary, call up further wavelengths:



The measured value for the selected wavelength appears and can be stored.

5.5 Measuring using tests without barcode

The last wavelength measured appears on the display.

Select the wavelength:

- Start the measurement:

Press .

The measured values can be documented as follows:

- Storage in the measured value memory
- Output to a connected printer via the serial interface (automatic when a printer is connected)
- Transmission to a PC for further processing (by using the relevant software, e.g. Multi/ACHATII or less conveniently – by means of a terminal program).
- To switch on the photometer, open the cover.
- Press ■2.

The following display appears:

Setur

▶documentation method parameter Kinetic Meter Setup

- Call up the documentation menu with .

documentation

₱no. of meas. value I.D. number download memory output methods return

The following functions can be selected:

- no. of meas. value
 - reset the number
- I. D. number
 - On / Off
- download memory
 - total
 - from date
 - with I. D. no. XXX
 - for method XXX
 - AQA
- output methods
 - all
 - user def. methods

The current settings are marked by "#" in the selection lists of the respective submenus.

6.1 Resetting the number of the measured value

documentation

no. of meas. value
I.D. number
download memory
output methods
return

- Call up the no. of meas. value submenu.

- no. of meas. value reset number: >Yes
 No return
- yes
 The numbering of the measured values starts again with 001 (default)
- no
 Consecutive numbering of the measured values (from 001 to 999)
- Select the menu item with or 2 8
- Confirm with .

6.2 Activating the ID number

If the *I. D. number* function is active, a sequence of up to 6 alphanumeric characters (I. D. number) is allocated to a measurement (e. g. sample location, customer number, river kilometer).

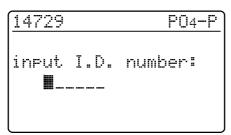
documentation
no. of meas. value
▶I.D. number
download memory
output methods
return

- Call up the I. D. number submenu.

- I.D. number ▶Off + on return
- off
 It is not possible to enter an ID number (default).
- on
 Input an ID number for each measured value.
- I.D. number
 Off

 on +
 return
- Select the menu item, *on*, with
- Confirm with

Measuring using the activated "ID number" function


or

- Call up the *concentration* measuring mode
- Insert and align the round cell, or
- Insert the AutoSelector and rectangular cell.

The following display appears:

Enter the required ID number
 Default:
 The ID number that was last er

The ID number that was last entered (initially, there are underscores).

The input is made as follows:

- Capital letters with
 - Numerals via the numeric keypad
- Confirm each time with . Confirmation without entering a character results in a space.

To erase incorrect inputs:

- By pressing C the last input is erased.

6.3 Download memory

The measured value storage can be selectively downloaded to either the display or serial interface. The selection of the output medium is made after the specification of the sorting criteria.

return

documentation
no. of meas. value
I.D.number

**download memory
output methods

download memory
return

total
from date
with I.D.no.
for method

Call up the download memory submenu.

The download memory menu item only appears after at least one measurement has been performed.

The following sorting criteria can be set:

- total all stored measured values
- from date all measured values from a special date
- with I. D. no. all measured values of a specific ID number
- for method all measured values of a special method
- AQA all measurements of a specific method monitored with AQA.
- Select the menu item with <a>ਰ

Confirm with

Selecting "total"

<u>download memory</u>

to display
to printer/PC
return

Select the output medium:

- to display
- to printer/PC (serial interface).
- Select the menu item with a or 2 8
- Confirm with to start the memory download.

Selecting "from date"

ųİ.

download memory

from date: **10**.02.98

- Input the date via the numeric keypad
- Erase the input using C
- Confirm with .

download memory

to display
to printer/PC
return

Select the output medium:

- to display
- to printer/PC (serial interface).
- Select the menu item with or or \$\emptyseteq\$ 8
- Confirm with to start the memory download.

Selecting "with I. D. no."

download memory

input I.D.number: FEED

 Enter the ID number Default:

The last ID number entered is preselected.

Confirm each time with

download memory

⊁to display to printer/PC return

Select the output medium:

- to display
- to printer/PC (serial interface).
- Select the menu item with or 2 8
- Confirm with to start the memory download.

Selecting "for method"

download memory

method: 1986

14729

PO4-P 0.5-25.0 mg/l Input the method Default:

The last method selected.

Confirm with to start the memory download.

download memory

⊁to display to printer/PC return

Select the output medium:

- to display
- to printer/PC (serial interface).
- Select the menu item with or 2 8
- Confirm with to start the memory download.

Selecting "AQA"

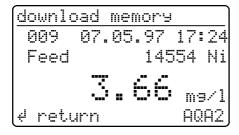
download memory

method: **19**86

14729

PO4-P

0.5-25.0 mg/l


- Input the method

Default:

The last method selected.

Confirm with to start the memory download.

Memory download to display

Each data record appears individually on the display beginning with the data record just measured. The display shows:

- no. of meas, value
- date/time
- I. D. number
- method designation
- citation
- meas. value
- unit
- Where necessary, AQA ID, e.g. AQA2.
- Scroll with or 2 8.

Memory download to printer/PC

download memory data transmission runs: 121 cancel

Memory download to the serial interface:

- Display of the transmitted no. of measured value (continuation display) beginning with the last measured value.
- Cancel with

Sample printout:

003	14541	10.02.98	11:56:33	t	80	mg/l	COD
002	14541	10.02.98	11:54:21	t	70	mg/l	COD
001	14729	03.02.98	18:30:53		* 0.3	mg/l	PO4-P

6.4 Download of the methods list

The stored methods are downloaded to the printer/PC via the serial interface.

> documentation no. of meas.value I.D. number download memory **▶**output methods return

Call up the output methods submenu.

outrut methods

⊭all

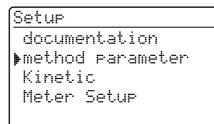
user def. return

The following parameters can be set:

- all Download of all stored methods
- user def. Download of user-defined methods.

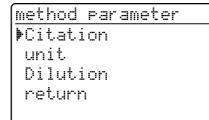
The menu item, user def., appears only after user-defined methods have been input.

Select the menu item with or 2 8


Start the download with

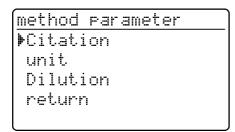
The following parameters can be set in the *method parameters* menu:

- citation
- unit
- dilution
- To switch on the photometer, open the cover.
- Press 🗗.

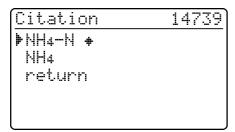

The following display appears:

- Call up the *method parameters* submenu.

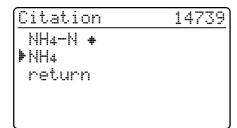
- Input the method number
- Confirm with

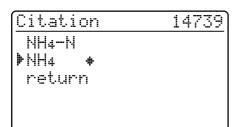

- Select the menu item with a or 2 8
- Call up the parameter by pressing .

7.1 Citation form


7.1.1 Changing the citation form

Example:


Change the citation form from "NH₄-N" to "NH₄".

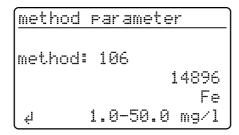

- Call up the citation submenu.

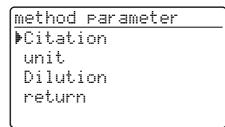
The current setting: NH_4 -N (\clubsuit).

- Using , scroll to NH₄
- Confirm with

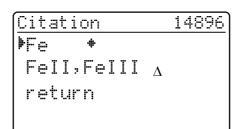
Citation form NH₄ is set (♣).

7.1.2 Performing a difference measurement

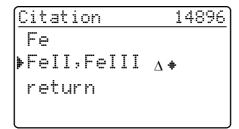

Difference measuring is possible for some methods (e.g. Iron II/III, Ca-/Mg Hardness).


For more information on this, see part, "Analysis specifications".

Example:


Determination of iron (II) and iron (III).

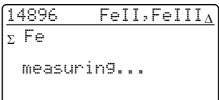
- Enter method 106
- Confirm with



- Call up the citation menu item.

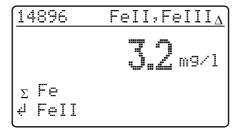
The current setting: Fe

- Using scroll to Fe II, Fe III∆
- Confirm with



Citation form Fe II, Fe III∆ (♣) is set.

Change to measuring by pressing .



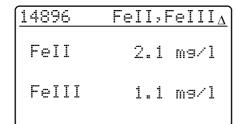
- Start the 1st measurement by inserting cell 1.

After approx. 2 s:

The 1st measured value appears on the display: Σ Fe.

- Remove cell 1
- Press 📴

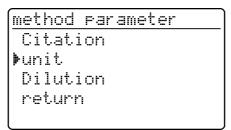
14896	FeII $_{2}$ FeIII $_{\Delta}$					
FeII						
measuring						

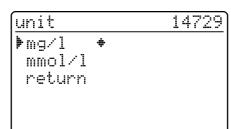

- Start the 2nd measurement by inserting cell 2.

After approx. 2 s:

14896	Fe	:II,F	\mathtt{eIII}_Δ
		21	m9/l
			mov T
FeII			
eFeII,F	eII	Ι	

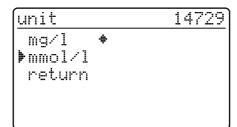
The 2nd measured value appears on the display: *Iron II*.


Continue to the display of both measured values using .


Display of both measured values as a summary.

7.2 Selecting the unit

The preset unit is "mg/l". It can be changed to "mmol/l".



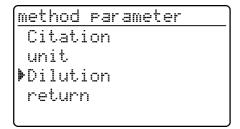
- Call up the *unit* submenu.

The current setting: mg/l (+)

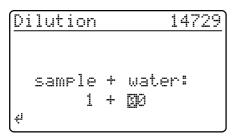
- Using scroll to mmol/l
- Confirm with

- Unit mmol/I (♣) is set.

7.3 Entering the dilution


Diluting a sample with **distilled water** enables the measuring range to be extended.

The photometer automatically includes any dilution factor entered when calculating the measured value.


Values from 0 to 99 can be entered as dilution factors.

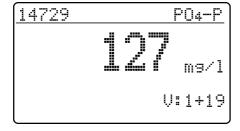
Example:

Enter dilution 1:20 (i.e. 1 part sample + 19 parts distilled water).

Call up the dilution submenu.



The current setting: 1:00.


- Input the dilution factor 19 via the numeric keypad
- Confirm with .

O۱

- Call up the concentration measuring mode
- Insert the cell
- Confirm the method.

The measured value is displayed together with the dilution factor.

Repeat measurements:

- Insert the cell, or start the measurement
- Confirm the dilution factor.

Erase the dilution factor by:

- changing the method
- switching off the photometer
- entering 00 as dilution number.

Analytical quality assurance (AQA) can be performed in two steps:

■ AQA1 - Photometer monitoring

AQA2 – Total system monitoring with standard solutions

1

The total system monitoring (AQA2) is a method-specific check using standard solutions

If this is performed successfully, it also includes photometer monitoring (AQA1).

See also part "General information" for further information on Analytical Quality Assurance (AQA).

The AQA mode must be activated in the photometer. In the delivery state it is switched off.

The AQA mode is activated by using a menu to select

- monitoring of the photometer (AQA1)
- monitoring of the total system using standard solutions (AQA2)

8.1 Activating AQA

- To switch on the photometer, open the cover.

8.1.1 Activating AQA via the menu guide

- Press .

Setup documentation method parameter Kinetic •Meter Setup - Call up the *meter setup* submenu.

meter setup
return
PAQA Functions
Correction Funct.
adjust zero
user def. methods

The *meter setup* submenu appears with the *AQA functions* menu item preselected.

Confirm with

A password request appears:

AQA-Configuration
input password:

A separate password protects settings of the AQA-configuration against unauthorized access (Changing the password see section 8.1.5).

Input the password:
 Only **numeric** characters are allowed.
 Default: 0000

Confirm with

If the input was incorrect:

AQA-Configuration

wron9 password

Repeat the input.

If you have forgotten the password, contact the service department.

After the password has been successfully input, the AQA configuration submenu appears:

> AQA-Configuration return

▶AQA-Mode

AQA-Standards AQA-Intervals

System locked

Call up the AQA mode function.

AQA-Mode

≯off

n weeks

n measurements

return

Default: off (no monitoring)

- Select AQA mode:
 - off
 - n weeks
 - n measurements
- Confirm with

Setur

documentation method parameter

▶AQA-Check

Kinetic

Meter Setup

- Selection of the AQA mode: meter
- system

The menu item, *meter*, only appears after the corresponding PhotoCheck standards have been input (see section 8.2.1).

- In the setup menu, call up the AQA check submenu.

AQA-Check

Meter

▶system

return

8.1.2 Changing AQA intervals

AQA intervals specify the interval between two AQA checks. A fixed time interval (*n weeks*) or a number of measurements (*n measurements*) can be specified as the interval.

The respective values that were input remain stored even if they are not activated.

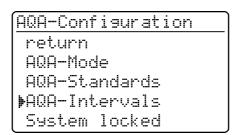
Additionally, two separate intervals can be set up for both photometer monitoring (AQA1) and system monitoring (AQA2).

For the total system monitoring (AQA2), a change of the time interval (*n weeks*) even retroactively applies to monitoring processes that are already running.

Changing the number of measurements (*n* measurements) does not affect monitoring processes already running.

Thus, individual numbers of measurements can be set for different methods.

After an interval has expired, the following consequences become effective:


- Warning and loss of AQA identification
- Locking of the method for concentration measurements (as long as the locking is active).

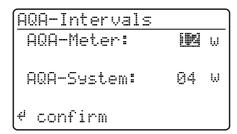
Setting ranges:

- Photometer monitoring (AQA1):
 - 1 to 52 weeks (default: 12 weeks) or
 - 1 to 9999 measurements (default: 1500)
- Monitoring of the total system using standard solutions (AQA2):
 - 1 to 52 weeks (default: 4 weeks) or
 - 1 to 9999 measurements (default: 100)

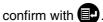
With the *n measurements* setting, a difference measurement (see section 7.1.2) is counted as one measurement only.

In the AQA configuration menu, call up the AQA intervals submenu.

According to the selection in the AQA mode menu, a fixed time interval (n weeks) or a number of measurements (n measurements) is set in the AQA intervals menu.



If the *AQA mode* function is switched off, the *AQA intervals* submenu is not available.


AQA interval, "n weeks"

The AQA interval, *n* weeks, is only effective if the *n* weeks setting is active for the AQA mode function. The specified number of *n* weeks applies to:

- the photometer with AQA1
- all methods with AQA2.
- In the AQA intervals menu, call up the n weeks submenu.

- To return without change, press three times
- Enter the time interval for AQA meter via the numeric keypad,

AQA interval, "n measurements"

The AQA interval, *n measurements*, is only effective if the *n measurements* setting is active for the *AQA mode* function

The AQA2 check starts the monitoring for one method at a time.

The specified number of *measurements* applies to:

- the instrument with AQA1 (total number of measurements performed, independent of whether AQA2 is active for some parameters)
- each method an AQA check will then be performed for with AQA2.

Thus, it is possible to define individual numbers of measurements for different methods.

The measurements are counted separately for each monitored method.

The monitoring intervals of AQA2 monitoring processes already started for other methods are not affected by changing the number of *measurements*. Thus the number of *measurements* can be set for further methods no matter which monitoring processes were started before.

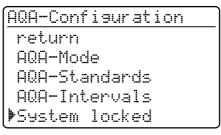
When an AQA2 check is performed, the number of *measurements* last set in the *AQA intervals* menu is automatically taken over.

Therefore, you should check and, if necessary, change the currently set number of *measure-ments* before each AQA2 check.

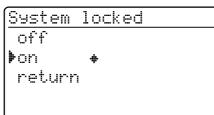
The currently set number of *measurements* for the AQA2 check is saved for the active method and output in the report individually (section 8.3.4).

In the AQA intervals menu, call up the n measurements submenu.

AQA-Intervals
AQA meter:
1500 measurements
AQA system:
0100 measurements


- To return without change, press three times
- Enter the number of measurements for AQA meter
 via the numeric keypad, confirm with .
- Enter the number of measurements for AQA system
 via the numeric keypad, confirm with .

8.1.3 Locking the system


The function *system locked* is effective if, for a monitored method,

As a result, a concentration measurement is not possible for this method.

- no AQA check was performed,
- the AQA check "system" has expired.

- Call up the *system locked* submenu.

- Select the menu item with or 2 8
- Confirm with

8.1.4 Changing the password

When delivered, the default password is *0000*. This password can be changed as follows:

AQA-Configuration
AQA-Standards
AQA-Intervals
System locked
•change password
reset

- Call up the *change password* submenu.
- Confirm with

- AQA-Password
 input password:
 (0000)
 2000
- Input the required password, e.g. 0100, via the numeric keypad
- Confirm with
- <u>AQA-Password</u> confirm password: (0100) **週**000
- Input the password once again:
- Confirm with .

8.1.5 Performing an AQA reset

If the Analytical Quality Assurance is to be switched off completely or reset to the delivery state, this can be made via the *reset* function in the *AQA configuration* submenu.

AQA-Configuration
AQA-Intervals
System locked
chan9e password
preset
return

- Call up the reset submenu
- Confirm with
- AQA-Configuration

 Preset
 cancel
- Select the reset menu item
- Confirm with

An AQA reset is performed.

8.2 Photometer monitoring (AQA1)

8.2.1 Entering PhotoCheck standards

A Spectroquant[®] PhotoCheck is required to perform the photometer monitoring (AQA1). **At least 1 standard** must be input. We recommend, however, to input all available standards.

- Press to call up the *setup* menu
- Call up the meter setup submenu.
- Call up the AQA functions submenu.
- Input the password
- Call up the AQA standards submenu and the following display appears:

AQA-Standards PhotoCheck standard solution return - Call up the *PhotoCheck* submenu.

PhotoCheck-Standards input output erase return

Select between

- input Input the theoretical value (absorbance) from the lot certificate of Spectroquant[®] PhotoCheck
- output Print/display theoretical values
- erase
 Erase theoretical values.

The *erase* and *output* menu items only appear after at least one standard has been input.

Example:

445-1 nm, theoretical value (absorbance) 0.200, admissible tolerance \pm 0.020

PhotoCheck-Stand	<u>dar ds</u> `
return	
▶ 445-1	
445-2	
445-3	
445-4	

<u>PhotoCheck</u>	445-1
theor.val.:	3. 200 A
√confirm	

PhotoCheck	445-1
theor.val.: Tolerance:	
dconfirm de la confirm ción d	

PhotoCheck-Standards
return
▶ 445-1 ∨
445-2
445-3
445-4

- Select with or 2 8
- Quit via the menu item, return
- Confirm with
- Input the theoretical value, 445-1
- Confirm with

If the standard is already stored, this value appears on the display.

- Input the tolerance via the numeric keypad
- Confirm with

PhotoCheck standard 445-1 is input.

- Select the next one with
- Input all PhotoCheck standards in this way.

8.2.2 Download of PhotoCheck standards

PhotoCheck-Standards
input

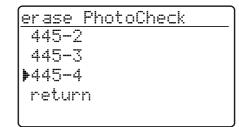
poutput
erase
return

 In the PhotoCheck standards submenu, call up the output menu item.

download PhotoCheck ▶to display to printer/PC return Select the output medium:

- to display
- to printer/PC (serial interface).
- Select with or 2 8
- Confirm with to start the download.

Example: Report output


AQA check meter 26.08.97		AQA1 13:19		
AQA interval		12 weeks		
test sol. 445-1	unit A	theor. val.	tolerance 0.020	AQA date 26.08.97

8.2.3 Erasing PhotoCheck standards

At least 1 standard must still be stored to be able to perform the AQA check function (meter monitoring).

PhotoCheck-Standards
input
output
perase
return

In the PhotoCheck standards submenu, call up the erase menu item.

Displays the stored PhotoCheck standards:

- Select with or 2 8
- Quit via return
- Erase with

8.2.4 Performing Photometer monitoring

Photometer monitoring (AQA1) includes a check of the

- Light barriers using the L1/L2 cells (contained within the scope of delivery of the Spectroquant[®] PhotoCheck)
- Absorbance measurement using PhotoCheck

standards.

- Press to call up the setup menu
- Call up the AQA check submenu
- Call up the meter submenu.

The following display appears:

L-Check	
use L1	
4 cancel	

- Insert the L1 cell.

After approx.

L-Che	eck		
L1	ok		

i

If the *error* message appears, clean the cell shaft with a damp, lint-free cloth and repeat the check.

If the message reoccurs, inform the service department.

After approx. 4 s:

L-Check	
use L2	
4 cancel	

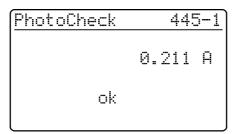
After approx. 1 s:

Cł	neck		
L2	ok		

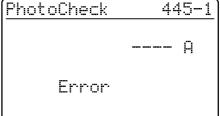
Insert the L2 cell.

After successful light barrier testing, the PhotoCheck standards (test solutions) are measured.

Example:



PhotoCheck	445-1
use test solution	445-1
 4 cancel	


Insert a cell with the test solution, 445-1. The photometer measures the absorbance of the test solution and compares the result with the value entered.

Absorbance test OK...

After approx. 3 s:

...or error message

- Insert the next test solution
- Cancel:

To cancel the check means no release for the next "meter" AQA interval!

Error elimination:

- 1. Repeat the measurement (insert the cell again)
- 2. If necessary, perform a zero adjustment and repeat the check
- 3. Exchange the test solution (each packet contains two identical test solutions)
- 4. Use a new Spectroquant® Photo-Check packet
- 5. Quit and have the photometer checked in the factory

The absorbance test is terminated if an error message occurs and the meter is not released. On switching on, the warning message "AQA interval expired" appears until the AQA was successfully performed or the AQA mode was switched off.

Example: Report output

AQA check meter 26.08.97 operator:			AQA1 10:23		
AQA interval AQA check AQA1			12 weeks ok		
L check			ok		
test sol.	meas. value	unit	theor. val.	tolerance	result
445-1	0.211	Α	0.200	0.020	ok

8.3 Total system monitoring with standard solutions (AQA2)

8.3.1 Entering standards

The standards compiled in the table "Spectroquant® CombiCheck and standard solutions" (see part "General information") are already stored method-specifically in the photometer. These values can be overwritten.

For **total system monitoring** (AQA2), only one standard per test can be stored at a time. The input of a standard is only complete with the input of the tolerances for finding it again, i.e. it is then first stored (no premature quitting).

- Press to call up the setup menu
- Call up the meter setup submenu.
- Call up the AQA functions submenu
- Input the password
- Call up the AQA standards submenu and the following display appears:

AQA-Standards
PhotoCheck
•standard solution
return

Call up the standard solutions submenu.

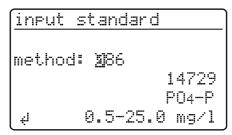
standard solution

input
output
erase
return

input standard
method: <u>M</u>86
14729
P04-P
Ø 0.5-25.0 mg/l

Select between

- inputEnter standards
- output Print/display standards
- eraseErase standards.

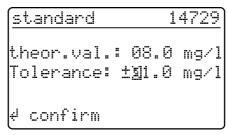

Displays the last selected method.

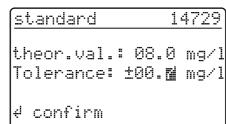
- Select the method with or 2 8
- Confirm with
- Input the standards.

Example:

Method 14729 with a preset theoretical value of 15.0 mg/l and tolerance of 1.0 mg/l (CombiCheck 80).

Change to: theoretical value = 8 mg/l, tolerance = 0.7 mg/l (CombiCheck 20).

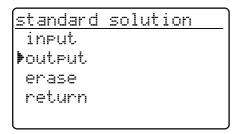

Confirm with


 Enter the new theoretical value, e.g. 8.0 mg/l, via the numeric keypad.
 Values in parentheses indicate the range in which

Values in parentheses indicate the range in which the theoretical value should move.

Confirm with

- Input the tolerance (0.7 mg/l) via the numeric keypad.
- Confirm with .



Both standard and tolerance values have been overwritten.

Confirm with .

8.3.2 Output of standards

The current list of stored standards is output via the RS 232 interface (PC/printer) or via the display.

- Select the *output* submenu
- Confirm with

download Standard ▶to display to printer/PC return Select the output medium:

- to display
- to printer/PC (serial interface).
- Select with or 2 8
- Confirm with to start the download.

Example: Report output

AQA check system 26.08.97		AQA2 13:57		
system locked		on		
method	unit	theor. val.	tolerance	AQA date
method 14554	unit mg/l	theor. val.	tolerance 0.20	AQA date 24.08.97

8.3.3 Erasing standards

Erasing the method-specific standard solutions leads to the change of the measured value identification from AQA2 to AQA1 (with activated AQA mode).

AQA-Standards
PhotoCheck
•standard solution
return

- Call up the *standard solutions* submenu.

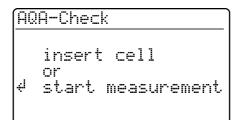
standard solution
input
output
perase
return

- Select the menu item, erase with
- Confirm with

erase standard ▶14560 14729 return

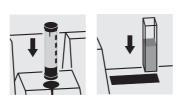
Select the standard to be erased with or

Erase with .


8.3.4 Monitoring of the total system using standard solutions

The AQA2 check can be performed after it has been activated (see section 8.1).

The following display appears:



For AQA2 with the setting, *n measurements*, we recommend to check and, if necessary, change the currently set number of *measurements* before each AQA check (8.1.2 CHANGING AQA INTERVALS).

or

 Insert cell with prepared solution ready to be measured (e.g. using Spectroquant [®] Combi-Check). The photometer reads the barcode, identifies the method and performs the AQA2 check.

AQA check OK ...

After approx. 2 s:

AQS-Check	14554
	1.93 mg/l
	ok

...or error message

14554
.45 mg/l
or.

 Repeat the check
 If the error is repeated, perform troubleshooting of the error. See "Analytical Quality Assurance" in part "General information".

The *system* AQA2 check must be performed **separately** for each method monitored. The release is stored with the date and the specified interval. The AQA2 interval *system* set up for the respective method begins again.

Example: Report output (AQA mode: n weeks)

AQA check system 26.08.97 operator:		AQA2 11:02			
AQA interval	4 weeks				
method	meas. value	unit	theor. val.	tolerance	result
14554	1.95	mg/l	2.00	0.20	ok

Example: Report output (AQA mode: n measurements)

AQA check system 26.08.97 operator:	AQA2 11:02				
AQA interval	100 measurements				
method	meas. unit theor. val. tolerance result value				result
14554	1.95	mg/l	2.00	0.20	ok

9. Kinetics

The kinetics function enables the tracking of timedependent changes in concentration or absorbance (for one selected wavelength) by repeating measurements over an adjustable time interval (setting possibility 00:05 to 60:00 min, smallest interval 5 seconds).

The kinetic measured values are stored in the memory in the same way as the measured values from single measurements (older measured values are overwritten). The maximum number of measuring cycles of a kinetic measurement is 1000 measurements (until the memory is full of kinetic measured values). The current measured value number appears in the header of the display. When the memory is full, the meter aborts the kinetic measurement. The starting values of the kinetic are not overwritten!

The output of kinetic measured values after the termination of the measurement is performed via the menu item, download memory.

- To switch on the photometer, open the cover.
- Press ■
- In the setup menu, call up the kinetics submenu. The following display appears:

Kinetic Concentration Absorbance ▶set interval return

Call up the set interval menu item.

meas.interval set interval **11** min 00 s 4 confirm

Input the interval via the numeric keypad (default: 1 min). Possible settings: 00:05 to 60:00

Confirm with

Kinetic Concentration Absorbance ▶set interval return

Call up the required measuring mode:

- Perform concentration measurement according to chapter 4
- Perform absorbance measurement according to chapter 5.

- To switch on the photometer, open the cover.
- Press .
- In the setup menu, call up the meter setup submenu.
 The following display appears:

Meter Setup
return
AQA Functions
•Correction Funct.
adjust zero
user def. methods

- Call up the correction funct. submenu.

The following display appears:

Correction Funct.

Blank Value

Reference Absorbance

Turbidity Correct.

return

Select the correction function:

- blank value
- reference absorbance
- turbidity correct.
- Confirm with

10.1 Blank value

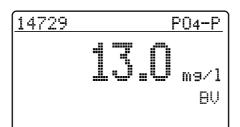
The blank value (= reagent blank value) for each method is stored in the photometer. When the *blank value* function is active, the stored value is ignored and the measured value of a self-prepared reagent blank solution is used instead.

This procedure increases the measuring accuracy for some tests (for more information, see part "Analytical procedures").

A blank value is always stored for the method that was just called up.

A blank value remains stored until it is erased (menu item, *erase blank value*) or overwritten.

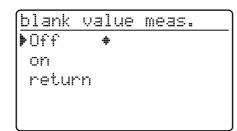
The *reset setup* function sets the *blank value* to *off*. The stored blank values, however, remain stored.


The *reset total* function resets all settings and blank values at once.

If a measured blank value is stored and the *blank value* function is active for a method, this blank value is used for determining the measured value and the measured value is documented accordingly.

The blank value function is not active when delivered.

Measuring the concentration with a blank value


- Press **t** to call up the *concentration* measuring mode.

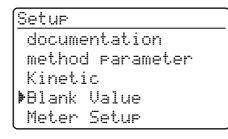
The value measured against the prepared blank solution is displayed.

10.1.1 Activating the blank value measurement

- In the correction funct. menu, call up the blank value submenu. The following display appears:

The blank value meas. function appears:

Select the *on* menu item with or 2 8

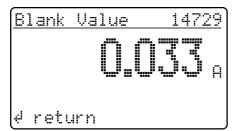

Confirm with

The stored blank values determined from blank solutions prepared by the user can be deactivated by switching off the blank value measurement. When doing so, the blank values remain stored in the memory and can be reactivated later.

Activating or deactivating the blank value function applies to all measurements using methods a blank value was stored for in the memory.

The blank value function is active and appears in the setup menu:

To measure the blank value, call up the blank value submenu in the setup menu.


10.1.2 Measuring the blank value

Blank Value

meas. blank value erase blank value recall blank values return

meas. blank value
insert cell
or
4 start measurement

After approx. 2 s:

Call up the meas. blank value menu item.

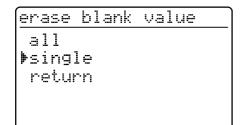
The menu items, *erase blank value* and *recall blank values* first appear after at least one blank value has been measured.

Insert a cell with blank solution to start a measurement

The message, *measuring...*, appears on the display.

10.1.3 Erasing blank values

A measured blank value is erased via the menu item, erase blank value.

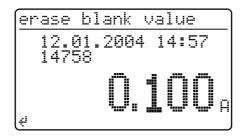

Blank Value

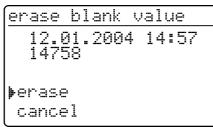
meas. blank value

perase blank value

recall blank values

return


- Select the erase blank value menu item
- After confirming with the erase blank value menu opens.



The *erase blank value* menu item first appears after a blank value has been measured.

Select between

- all
 Erase all stored blank values
- single
 Erase individual stored blank value

Each stored blank value is displayed with the date of the blank value measurement and the relevant method designation.

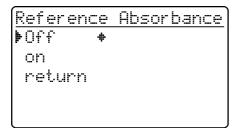
- Select the blank value with for 2 8
- Erase the displayed blank value with
- Select the *erase* menu item with or 2 8
- Confirm with

10.1.4 Recalling blank values

Blank Value
meas. blank value
erase blank value
precall blank values
return

recall blank values
12.01.2004 14:57
14758

U.LOO
A


- Select the *recall blank values* menu item with or
- Confirm with
- Select the blank value with or 2 8
- Return with

10.2 Reference absorbance

Each absorbance measurement is made against the basic absorbance stored in the meter. When activating the reference absorbance, this value is ignored and the value measured as the reference absorbance is used instead. The reference absorbance function is not active when delivered.

- In the correction funct. menu, call up the reference absorbance submenu.

The following display appears:

The reference absorbance function is active and appears in the setup menu:

> Setur documentation method parameter Kinetic **▶**ReferenceAbsorbance Meter Setur

> Reference Absorbance ▶measure ref.absorb. erase ref.absorb. return

> Reference Absorbance insert cell or 4 start measurement

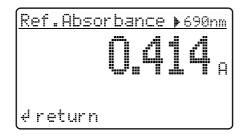
The measured reference absorbance value remains stored until

- the photometer is switched off
- the method is changed
- it is manually erased using the erase ref. absorb. function.

The reference absorbance function appears:

- Select the on menu item with or 2 8

Confirm with

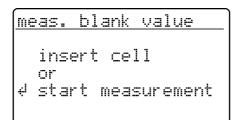

- To measure the reference absorbance, call up the setup submenu in the reference absorbance menu.
- Call up the measure ref. absorb. menu item.

The *erase ref. absorb.* menu item first appears after a reference absorbance has been measured.

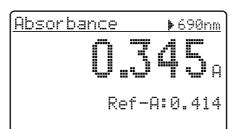
Insert the cell to start the measurement. The message, measuring..., ... appears on the display.

After approx. 2 s:

The measured value for the wavelength displayed at the top right appears.


 If necessary, change the wavelength by pressing the key.

The measured value for the selected wavelength appears.


The measured reference absorbance remains valid for all consecutive measurements with the same wavelength.

Press to call up the absorbance measuring mode.

- Insert the measuring cell.

After approx. 2 s:

The measured value corrected by the reference absorbance is displayed.

Erasing the reference value

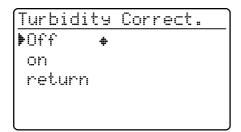
A measured reference absorbance value is erased

- manually using the *erase ref. absorb.* function.
- by switching off the meter.

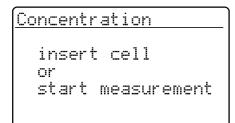
Reference Absorbance measure ref.absorb.

return

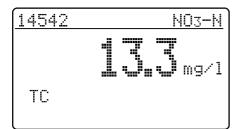
- Select the erase ref. absorb. menu item
- After confirming with , the reference absorbance value is erased.


10.3 Turbidity correction

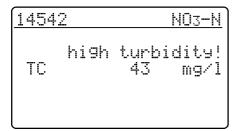
Turbidity correction is used in sample solutions that contain finely distributed suspended particles. The suspended particles cause a light absorption.


This leads to incorrect (too high) measured values. The function remains permanently switched on after it has been activated. Values that were measured using turbidity correction are given an identifier in the **display** and in the **documentation** (printout and storage).

 In the correction funct. menu, call up the turbidity correct. submenu.


The following display appears:

 Press to call up the concentration measuring mode.



After approx. 2 s:

Warning of excessive turbidity:

If the turbidity absorbance of 0.100 A is exceeded, the meter displays the measured value together with a warning.

The *turbidity correct*. function is not active when delivered.

This function is not necessary, or useful, in all methods. If the turbidity correction is active, the photometer automatically decides whether to perform the function or not depending on the method.

The turbidity correct. function appears:

- Select the on menu item with or 2 8
 - Select the on mend item with
- Confirm with

- Insert the measuring cell.

Display of the measured value with turbidity correction switched on: Identified by *TC.*

11. Zero adjustment

Zero adjustment is necessary

- after changing the lamp
- after the error message, PhotoCheck (AQA1) occurs
- on initial commissioning
- if the photometer was mechanically stressed, e.g. percussion, transport
- if the ambient temperature changed by more than
 5 °C since the last zero adjustment
- at least every six months.

When performing the zero adjustment with a **round cell** observe the following points:

- Only use a clean, scratch-free round cell with distilled water. A prepared zero cell is provided with your photometer. In addition, a prepared zero cell is contained in the scope of delivery of the *Photo-Check* (article 14693).
- If the round cell is visibly contaminated, or at least every 24 months, clean and refill it (minimum filling level 20 mm). Then check the cell for scratches.

When performing the zero adjustment with a **rectangular cell** observe the following points:

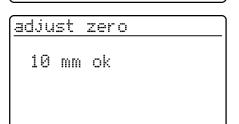
- With rectangular cells, the adjustment must be made using the same cell type (manufacturer) as for the measurement. This is important because glass of different manufacturers has different absorption behavior. When changing the cell type always repeat the zero adjustment with the new type.
- Clean the rectangular cell before performing the zero adjustment and fill it with distilled water (minimum filling level 20 mm).
- For measurement, always insert rectangular cells in the cell shaft with the same orientation as during the zero adjustment (e.g. cell labeling always on the left side).

11. Zero adjustment

Only perform the zero adjustment against distilled water in an optically perfect cell.

− Press

- In the *setup* menu, call up the *meter setup* submenu.


The following display appears:

Meter Setur reset select language set date/time **∍**adjust zero user def. methods

Call up the zero adjustment submenu with 🕣 or

adjust zero insert cell √ start measurement - Insert a cell with distilled water. The message, *measuring...*, appears on the display.

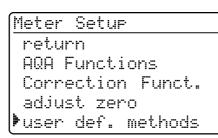
After approx. 2 s:

Successful zero adjustment for the 10 mm rectangular cell.

The zero adjustment must be performed separately for each cell type.

User-defined methods are stored under code numbers. Numbers from 301 to 399 are allowed. These code numbers are used to fast-find userdefined methods when setting methods.

A total of 50 user-defined methods can be stored. The 51st user-defined method causes the method error message to appear; if this occurs, erase an old


If you input a method designation that is already stored in the photometer, the characteristics are displayed and you can modify them. If the input is successful, the meter displays the accepted method.

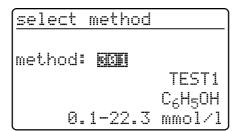
The photometer automatically restricts the measuring range (no message) if the entered method data allows absorbance values > 3.2 A.

- − Press
- In the setup menu, call up the meter setup submenu.

The following display appears:

user def. methods **▶**input charact. print charact. erase return

Call up the *user def. methods* submenu with 🕣 or



Submenu *user def. methods* appears:

- input charact. Entering characteristics for user-defined methods.
- print charact. Printing the characteristics for user-defined methods; first appears after characteristics have been input.
- erase Erasing single or all user-defined methods; first appears after characteristics have been input.

Measuring with user-defined methods:

- Insert the measuring cell
- Input a method number via the numeric keypad
- Confirming with starts the measurement.

12.1 Entering characteristics via the keyboard

user def. methods

▶input charact. print charact. erase return

- Select the *input charact*. submenu with 🗊 or

Input charact. method number:

- Input the method number (301 to 399) via the numeric keypad
- Confirm with Confirming without character input results in a

input characteristics method-designation:

- Input the method designation, e.g. TEST1:
 - Enter letters using , numerals via the numeric keypad
 - Confirm each time with

Example:

input charact. method designation: **II**EST1

input charact.

Wavelen9th:

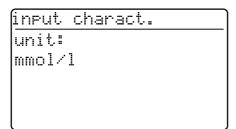
620 nm

665 nm

▶690 nm

Select the wavelength with

Confirm with


input charact.

Citation:

C6H50H

- Enter the citation form:
- Enter letters using , numerals via the numeric keypad
- Confirm each time with

Input the unit with

Confirm each time with

input charact. Resolution: **▶**0.1 1 10

Selecting the resolution defines the numeric display of the beginning and end of the measuring range.

Possible selections:

- 0.001
- 0.01
- 0.1
- 10
- 100
- Select the resolution using
- Confirm with .

input charact. zero point (E0): +0.009

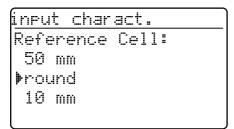
Select the sign (+/–) using

- Enter the zero point:
- Numbers from 0 to 9
- Confirm each time with

<u>input charact.</u> slope (E/C): +2.12

Select the sign (+/–) using

- Enter the slope:
- Numbers from 0 to 9
- Confirm each time with


input charact. meas.ran9e be9in: 0.1 mmol/l

- Enter the meas. range begin:
 - Numbers from 0 to 9
 - Confirm each time with

input charact. meas.ran9e end: 22.3 mmol/l

- Enter the meas. range end:
- Numbers from 0 to 9
- Confirm each time with

method stored	
Code.No.	301
desi9nation	TEST1
Wavelen9th	690nm
unit	mmol/l
Citation	C ₆ H ₅ OH

- round
- 10 mm
- 20 mm
- 50 mm
- Select with

Confirm with

Example:

Display and automatic printout of code no. and characteristics as a list.

- Scroll with
- Return with

12.2 Entering characteristics via the PC

Data format of the method data:

The data of user-defined methods is transferred in a string. The individual datablocks of the string are separated by spaces:

Further information is given in the chapter 15 RS 232 C INTERFACE.

Datablock	Character	Example
input user-def. methods	4	CEME
method number	3	301
method designation	5	TEST1
wavelength	5	690nm
unit	9	mmol/l
citation	12	C6H5OH
zero point	5	0.009
slope	5	2.12
meas. range begin	5	0.1
meas. range end	5	22.3
reference cell	2	(=round)
resolution	5	0.1

Error message "INVALID COMMAND"

The following inputs lead to this error message:

- slope = 0 or < -32000, > 32000
- zero point > 32000
- meas. range begin < 0 or > 32000
- meas. range end < 0 or > 32000
- meas. range end ≤ meas. range begin
- reference cell not equal to 10 mm, 14 mm, 20 mm or 50 mm
- designation of the wavelength does not agree with the photometer
- resolution not 0.1, 0.01,...

Example:

CEME 301 Test1 690nm mmol/l C6H5OH 0.009 2.12 0.1 22.3 14 0.1 <CR>

12.3 Printing characteristics

user def. methods

input charact. **⊁**print charact.

erase return - Call up the *print charact*. submenu with 🖅 or

Start the print with

print charact.

printing...

3 of 10 methods printed

√ cancel

The characteristics of all user-defined methods are printed sequentially as a list.

Cancel with

Example: Report printout

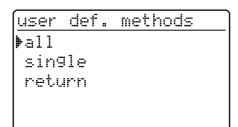
< date > < time >

user def. methods:

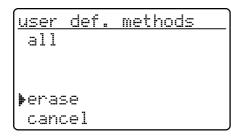
301 code. no. designation TEST1 wavelength 690 nm unit mmol/l citation C6H5OH 0.1 resolution zero point +0.009 slope +2.12 **MRB** 0.1 **MRE** 22.3 reference cell round

12.4 Erasing user-defined methods

user def. methods


input charact. print charact.

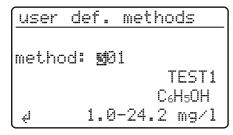
)erase return - Call up the *erase* submenu with or 2 8.

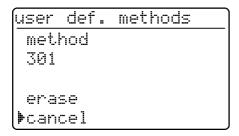


Select the required menu item:


- all Erase all user-defined methods
- single Selectively erase individual methods
- Confirm with

Selecting "all"


- Call up the *erase* menu item with or 2 8



The message methods are erased ... appears

Selecting "single"

- Select a method, e.g. TEST1:
 - Input the method number (301) via the numeric keypad or
- by scrolling with
- Confirm with

- Call up the *erase* menu item with or 2 8
- Confirm with

The message method is erased ... appears

13. Meter Setup

- To switch on the photometer, open the cover.
- Press
- In the setup menu, call up the meter setup submenu.
 The following display appears:

Meter Setup
return

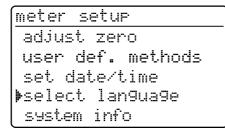
MAQA Functions
Correction Funct.
adjust zero
user def. methods

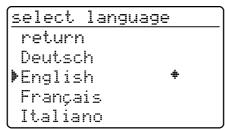
This chapter describes four functions of the *meter setup* menu:

- select language
- set date/time
- Performing a meter reset
- system info

13.1 Selecting the language

The following languages are stored in the photometer:


- Deutsch (German)
- English
- Français (French)
- Italiano (Italian)
- Português (Portuguese)
- Polski (Polish)
- Dansk (Danish)
- Svenska (Swedish)
- Español (Spanish)
- Nederlands (Dutch)
- Indonesia (Indonesian)
- Ceština (Czech)
- Magyar (Hungarian)
- Russkij (Russian)
- Türkçe (Turkish)
- Brasil (Brasilian)


This is the order in which the available languages appear in the *select language* menu.

The available languages are listed in the language of the respective country in the photometer.

When *Russkij* is selected as the language, the Cyrillic alphabet is used for the user guidance. Method designation and ID numbers are always displayed in Latin script. For output to the RS 232 C interface, Cyrillic characters are converted to Latin characters according to GOST.

- Call up the select language menu item.

- Select a language, e.g. English
- Confirm with 💷
- Press the key again:

Return to the *meter setup* submenu. The displays appear in English.

13. Meter Setup

13.2 Setting the date/time

meter setur
correction funct.
adjust zero
user def. methods
pset date/time
select language

Call up the set date/time menu item.

- Date/Time
 Date MM.01.98
 (dd.mm.99)
 Time 16:45
 (hh:mm)
- Input the date via the numeric keypad
- Confirm with
- Input the time via the numeric keypad
- Confirm with

13.3 Reset

It is possible to reset the photometer to its factory settings (delivery state) in single steps. The *reset total* function resets all settings and blank values at once.

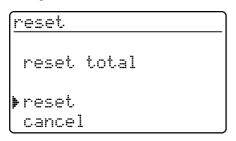
All AQA functions are retained when *meter* setup is used.

See section 8.1.5 for AQA reset.

Meter Setup
set date/time
select lan9ua9e
system info
preset
return

Call up the reset menu item.

reset total meas.storage Setur return


Select between

total

Erase the measured value storage and reset the settings to the delivery state

- meas. storage
 Erase the measured value storage
- setup
 Reset all settings to the delivery state.

Example: Performing a total reset

- Select the reset menu item
- Confirm with

A meter reset is performed (measured value memory and setup).

13. Meter Setup

13.4 System info

Meter Setup
user def. methods
set date/time
select lan9ua9e
•system info
reset

- Call up the *system info* menu item.

Meter Setup

Software: 3.15 methods: 33.00

√ return

Sample display

14. Updating method data

You will always find the latest method data for your photometer on the Internet. A method update contains all new test sets and methods respectively. Additionally, minor modifications of already existing methods are transferred with it. With a method update, you receive all new methods and, at the same time, can easily and conveniently update all method data.

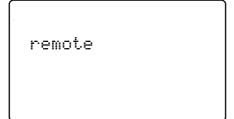
The software provided for downloading contains the program file and method data. It can be downloaded from our homepage with a mouse click.

The files are packed in a self-decompressing archive file (*.exe) or in a zip file (*.zip) and can be decompressed after the download.

Carry out the update as follows:

To download and update the photometer method data via the built-in RS232 interface, you need the following:

- PC (Win 95 or higher) with Internet connection
- PC cable (available as an accessory)
- An *.exe or *.zip file from the Internet; contains the "UpdateMethodData.exe" program file and 6 method data files (pls6md.xxx, pls12md.xxx, plspekmd.xxx, nova30md.xxx, nova60md.xxx, nova400md.xxx; xxx = version).
 - Switch on the photometer (open the cover).
 - Switch on the PC.
 - Download from the Internet the software including the method data (*.exe or *.zip) and copy it into a separate directory or on a floppy disk.
 - Decompress the *.exe file with a double-click or decompress the *.zip file with Winzip.
 - Connect the serial interfaces of the PC and photometer with the cable.
 - Start the "UpdateMethodData.exe" program file by double-clicking. The "Update Method Data" window appears. In the upper half of the window there is the name of your photometer (among other things), behind it there is the method version in brackets (e.g. 8.00).



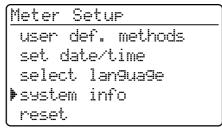
All method data are reloaded into the photometer with the update. The old method data are overwritten by this.

- Click on the "Search meter" button.
 The program automatically recognizes the connected photometer. Another "Update Method Data" window appears.
- Click on the "Start" button to start the method download. The process takes approx. 3 minutes. You can terminate it at any time by clicking on the "Cancel" button. In this case, however, the download has to be carried out once again completely so that the photometer can save the method data and is operative.

14. Updating method data

During the download, the following display appears on the photometer screen:

 After the download, confirm the "Data successfully downloaded" message. The download is finished.
 The photometer returns to the *concentration* measuring mode.



You can check whether the new method data are stored in the photometer.

To do so, proceed as follows:

 In the setup menu, call up the meter setup submenu.

- Call up the system info menu item.

Meter Setup

Software: 3.15

methods: 33.00

4 return

Sample display (the software version is irrelevant here).

The method version (here: 33.00) has to agree with the method version for your photometer in the "Update Method Data" window during the download.

Error messages

Message	Meaning	Re	emedy
No meter found	Connection PC - photo- meter out of order or not available	-	Tightly connect the cable to the serial interfaces of the PC and photometer.
		_	Use the correct cable
	Photometer not recognized	_	Select the photometer manually

15. RS 232 C interface

Via the interface, data can be

- output to a printer and
- exchanged with a personal computer (PC)

For this, the following items are available as accessories:

- Printer cable
- Printer
- Interface cable
- Communication software.

15.1 Principle course of the remote control

String to meter	Reply from meter	Operating mode
S <cr></cr>	> <cr></cr>	Remote (remote control)
Command xx (see 15.2 command list)	Reply string command xx <cr></cr>	Remote (remote control)
•		
CLOC <cr></cr>		Concentration measurement

The keyboard of the photometer is locked in the *remote* operating mode.

15.2 Command list

Command	Function
S	Begin communication
CLOC	Switchover to normal operation (concentration measurement)
CDAT [anz]	Reads out stored measured values; [anz] = number of the measured values to be output
CMES [MMM]	Measurement and transmission of the concentration value with date/time; [MMM] = method number (e.g. 086 for method 14729)
CEXT [LLL]	Measurement and transmission of the absorbance value for the wavelength; [LLL] = wavelength
CBLA [MMM]	Measurement and transmission of the sample blank value; [MMM] = method number
CCLB [MMM]	Erase measured sample blank values; [MMM] = method number
CEME	Input user-defined methods (see chapter chapter 12 USER-DEFINED METHODS)
REME [MMM]	Output user-defined methods; [MMM] = method number

The error message, *Invalid command*, appears if commands are unknown or cannot be carried out (e. g. if optional parameters do not agree with the cell coding). Optional parameters [MMM] and [LLL] need only be input for uncoded cells.

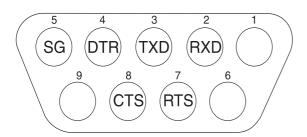
15. RS 232 C interface

15.3 Output format of measured values

Character	Meaning	
3	consecutive number (not required for interface commands CMES, CEXT and CBLA)	
5	method designation	
6	I. D. number	
17	date and time	
4	special characters	
9	meas. value	
10	unit	
12	citation	
4	AQA ID (AQA2/AQA1)	
4	dilution factor	

Notes:

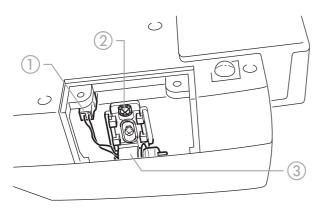
Data fields are separated by spaces. Character set: IBM, code page 437


Meaning of the special characters:

- ! = Measuring with blank value (concentration) or reference absorbance (absorbance)
- t/T = Measurement with turbidity correction/with high turbidity
- * = Measured value outside the measuring range
- Q = AQA measurement

15.4 Data transmission

Baud rate	4800
Data bits:	8
Stop bits:	1
Parity:	none
Handshake:	Hardware
Max. cable length	15 m


15.5 Pin assignment

Photometer	Computer		Printer
9-pin socket	9-pin socket	25 pin plug	with RS 232 C interface
1	4	20	-
2	3	2	TXD
3	2	3	RXD
4	1 and 6	6	-
5	5	7	SG
6	4	20	-
7	8	5	-
8	7	4	DTR (if not available: short-circuit CTS and RTS)
9		-	-

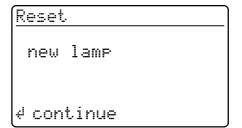
16. Maintenance, cleaning, disposal

16.1 Maintenance - Changing the lamp

- Switch off the photometer and disconnect it from the power line
- Carefully turn up the photometer and park it safely
- Screw off the lamp cover on the underside of the photometer

Let the lamp of the photometer cool down.

- Pull out the plug 1
- Unscrew the screw 2
- Remove the lamp with its holder 3 by pulling it gently upwards


Do not touch the new light bulb of the photometer.

Insert a new preset lamp and screw it tight using the screw (2)

- Connect the plug 1 of the new lamp
- Screw the lamp cover on again
- Set up the photometer again and connect it to the power line
- Press and hold

Switch on the meter (open the cover) and after the following display appears, release

Press

16.2 Cleaning - Actions to take if a cell is broken

Do not rotate the photometer to pour out the liquid!

The photometer has a draining mechanism under the cell shaft that, when operated correctly, prevents any liquid coming into contact with electronic components.

- Switch off the photometer (close the cover) and disconnect it from the line power
- Let the liquid drain off
- Carefully remove any pieces of glass, e.g. using
- Carefully clean the cell shaft with a damp, lint-free cloth

Let the cell shaft dry

After it is dry, check the photometer:

Perform a photometer monitoring (see section 8.2).

16. Maintenance, cleaning, disposal

16.3 Disposal

Packing

The measuring instrument is sent out in a protective transport packing.

We recommend: Keep the packing material in case you have to send the measuring instrument back for service. The original packing prevents the measuring instrument from being damaged during transport.

Measuring instrument

Dispose of the measuring instrument as electronic waste at an appropriate collection point. It is illegal to dispose of it in household refuse.

Within the European Union, the batteries are removed at a specialized treatment center at the instrument's end of life. The instruments are taken to one of those specialized treatment centers via the recycling system set up for this purpose.

17. Technical Data

Optical measuring principle	Filter photometer with reference beam absorption measurement; simultaneous recording of all wavelengths	Self-Check	Test: Memory, optics, electronic measured value recording, barcode recognition, cell recognition Automatic calibration: Optics, electronic measured value	
Light source	Tungsten halogen lamp, preset			
Receiver	ceiver 12 x photo diode array		recording, barcode recognition, rectangular cell recognition	
Optical filters	340 nm, 410 nm, 445 nm, 500 nm, 525 nm, 550 nm, 565 nm, 605 nm, 620 nm, 665 nm, 690 nm, 820 nm, Accuracy: ±2 nm;	Time/Date	Real-time clock in the photometer	
		Dimensions	H: 140 mm, D: 270 mm, W: 260 mm	
	Half width: 340 nm = 30 nm ±2 nm; all others = 10 nm ±2 nm	Weight	approx. 2.3 kg (battery version: 2.8 kg)	
Photometric	0.001 A at 1.000 A	Meter safety	EN 61010, IEC 1010	
reproducibility		Safety class	EN 61010-1/class 3	
Photometric resolution	0.001 A	Power pack	FRIWO FW 75550/15 Friwo Part. No. 1822367	
Warm-up time	none	ne		
Measuring time	approx. 2 s		Input: 100 240 V ~ /	
Types of measurement	Concentration (method dependent, selectable display form), absorbance, transmission		50 60 Hz / 400 mA Output: 15 V DC / 1 A	
	absorbance, transmission			
Measuring range absorbance	-0.300 A to 3.200 A	Power consump- tion in line operation	max. 1300 mA	
	-0.300 A to 3.200 A	tion in line operation Batteries		
absorbance Measuring range	-0.300 A to 3.200 A	tion in line operation Batteries Backup	max. 1300 mA 1 x 3,0 V Lithium battery, soldered in the instrument	
absorbance Measuring range transmission	-0.300 A to 3.200 A 0.1 % to 1000 %	Batteries Backup battery	1 x 3,0 V Lithium battery, soldered in the instrument	
Measuring range transmission Balancing	-0.300 A to 3.200 A 0.1 % to 1000 % Permanently stored	tion in line operation Batteries Backup	1 x 3,0 V Lithium battery, soldered in the instrument Built-in battery: NiMH recharge- able battery 7.2 V/2500 mAh, operating time with new, fully	
absorbance Measuring range transmission Balancing Drift correction Retrofitting of	-0.300 A to 3.200 A 0.1 % to 1000 % Permanently stored Automatic on each Self-Check	Batteries Backup battery Battery	1 x 3,0 V Lithium battery, soldered in the instrument Built-in battery: NiMH rechargeable battery 7.2 V/2500 mAh, operating time with new, fully charged battery: typical 40 hours with 10 measurements per hour, trickle charging in line operation,	
absorbance Measuring range transmission Balancing Drift correction Retrofitting of new methods User-defined	-0.300 A to 3.200 A 0.1 % to 1000 % Permanently stored Automatic on each Self-Check via the Internet	Batteries Backup battery Battery	1 x 3,0 V Lithium battery, soldered in the instrument Built-in battery: NiMH rechargeable battery 7.2 V/2500 mAh, operating time with new, fully charged battery: typical 40 hours with 10 measurements per hour,	
absorbance Measuring range transmission Balancing Drift correction Retrofitting of new methods User-defined methods Kinetics Bar code recognition	-0.300 A to 3.200 A 0.1 % to 1000 % Permanently stored Automatic on each Self-Check via the Internet max. 10 Automatic measurement repetition with selectable interval automatic selection of the method; automatic recognition of the reagents lot	Batteries Backup battery Battery	1 x 3,0 V Lithium battery, soldered in the instrument Built-in battery: NiMH rechargeable battery 7.2 V/2500 mAh, operating time with new, fully charged battery: typical 40 hours with 10 measurements per hour, trickle charging in line operation, approx. 5 h charging time for a discharged battery, total	
absorbance Measuring range transmission Balancing Drift correction Retrofitting of new methods User-defined methods Kinetics Bar code recog-	-0.300 A to 3.200 A 0.1 % to 1000 % Permanently stored Automatic on each Self-Check via the Internet max. 10 Automatic measurement repetition with selectable interval automatic selection of the method; automatic recognition of the	Batteries Backup battery Battery (optional)	1 x 3,0 V Lithium battery, soldered in the instrument Built-in battery: NiMH rechargeable battery 7.2 V/2500 mAh, operating time with new, fully charged battery: typical 40 hours with 10 measurements per hour, trickle charging in line operation, approx. 5 h charging time for a discharged battery, total discharge protection Directive 2004/108/EU EN 61326-1 EN 61000-3-2 EN 61000-3-3	

17. Technical Data

Allowable relative humidity **Test certificate**

Annual mean: 75 % 30 days/year: 95 %

other days: 85 %

CE

Operating elements

On/off switch actuated by opening/closing the lid of the cell shaft cover

Silicon keyboard with 4 function keys and number field with 12 kevs

Round cell shaft

 for round cells (flat cell floor, external/internal diameter 16 mm / 13.8 mm)

Rectangular cell shaft

 for 10 mm, 20 mm and 50 mm rectangular cells with a maximum width of 12.60 mm

Display Graphical display 128 x 64 pixels

Connections

Digital interface

RS 232 C 9-pin socket to connect to PC or printer

Power supply 2-pin socket to connect the plugin power supply unit

Data storage

Cyclical memory to record 1000 measured values

Equipment Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Software settings when delivered				
ID number input:	Off			
Measured value	1			
number:				
blank value is:	Off			
Reference absorbance:	Off			
turbidity correct.:	Off			
language:	English			
Kinetic interval:	60s			
Date of the last valid	invalid (not yet measured)			
AQA1 check:				
AQA1 interval:	12 weeks			
AQA2 interval:	4 weeks			
AQA password:	0000			
AQA mode:	Off			
Lock measurement if	Off			
AQA2 expired:				
Checks to be measured	none			
with AQA1:				
AQA2 values:	none			

Settings after reset - total

Measured value storage and setup reset

Settings after reset - meas. storage Meas. value number: Measured values: none

Settings after reset - setup				
ID number input:	Off			
Measured value number:	1			
blank value:	Off			
reference absorbance:	Off			
turbidity correct.:	Off			
Language:	unchanged			
Kinetic interval:	60s			
Citation forms of the methods	respective reference citation			
Units of the methods:	respective reference unit			

Settings after reset - A	QA	
Date of the last valid	invalid (not yet measured)	
AQA1 check:		
AQA1 interval:	12 weeks	
AQA2 interval:	4 weeks	
AQA password:	0000	
AQA mode:	Off	
Lock measurement if		
AQA2 expired:	Off	
Checks to be measured	none	
with AQA1:	(Input theoretical values and tolerances are not erased and are offered again with the next input).	
AQA2 values:	none	
	(theoretical values and tolerances of all methods are set to default values	
	according to the "Spectroquant CombiCheck and standard solutions" table in the part "General information".)	

18. What to do if...

The display remains blank when switched on	Connect the photometer to the line power via the power pack. In the case of battery operation: Battery empty, charging required (approx. 5h); line operation is possible without restrictions during charging time.		
appears	Battery nearly empty. Charging required (see chapter 3 COMMISSIONING).		
Date/time is lost when switched off	The backup battery of the real time clock is empty and has to be replaced. Send the photometer to the service department for this.		
Password forgotten	Inform the service department.		
Photometer does not react	The connected printer is off line. Switch on the printer or pull out the interface cable.		
Error messages:			
remove cell	The message remove cell appears on the display although no cell is inserted. Clean the cell shaft with a damp, lint-free cloth. If the error message still appears, return the photometer to the service department.		
lamp defective	Replace the lamp (see chapter chapter 16 MAINTENANCE, CLEANING, DISPOSAL).		
no zero adjustment	No zero adjustment is stored in the meter for the cell. Perform zero adjustment (see chapter chapter 11 ZERO ADJUSTMENT).		
cell error	The rectangular cell is inserted incorrectly, or two cells are inserted. Insert the cell correctly.		
cell invalid	A cell type that is not allowed for the selected method was selected, e. g. a round cell for the reagent test.		
method invalid	No data is stored in the photometer for the selected method. Update method data (see chapter chapter 14 UPDATING METHOD DATA).		
wrong method	During a difference measurement, the method was changed between the first and second measurement. During a difference measurement, the method must remain identical.		
E_0	Hardware error: Send the photometer to the service department.		
E_1, E_2 or E_3	Replace the lamp (see chapter chapter 16 MAINTENANCE, CLEANING, DISPOSAL). If the error message remains, send the meter to the service department.		

What can Xylem do for you?

We're a global team unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to xyleminc.com.

Service address:

Xylem Analytics Germany Sales GmbH & Co. KG WTW Dr.-Karl-Slevogt-Str. 1 82362 Weilheim Germany

Tel.: +49 881 183-325 Fax: +49 881 183-414

E-Mail wtw.rma@xyleminc.com

Internet: www.WTW.com

Xylem Analytics Germany GmbH Dr.-Karl-Slevogt-Str. 1 82362 Weilheim Germany